

Activity Guide

## WHIGH ANIMAL TS



## Table of Contents

3 How to Use This Activity Guide (General)
4 What Do Children Already Know?
5 Pre-Reading Questions
5 Comprehension Questions \& Writing Prompts
6 Cross-Curricular Vocabulary Activities
7 Edible Sorting and Classifying Activity
9 Classifying Animals
10 Animal Chart
13 Vertebrate Classes
14 Common Invertebrates
15 Dichotomous (Yes/No) Key
16 Animal Sorting Cards
20 Math: Measuring (compare \& contrast)
22 Appendix A—"What Children Know" Cards
23 Appendix B-Venn Diagram

Copyright 2018 © Arbordale Publishing These activities may be copied for personal and non-commercial use in educational settings.
www.ArbordalePublishing.com

Arbordale Publishing
Mt. Pleasant, SC 29464

by Brian Rock illustrated by Carolyn Le

## How to Use This Activity Guide (General)

There are a wide variety of activities that teach or supplement all curricular areas. The activities are easily adapted up or down depending on the age and abilities of the children involved. And, it is easy to pick and choose what is appropriate for your setting and the time involved. Most activities can be done with an individual child or a group of children.

For teachers in the classroom: We understand that time is at a premium and that, especially in the early grades, much time is spent teaching language arts. All Arbordale titles are specifically selected and developed to get children excited about learning other subjects (science, geography, social studies, math, etc.) while reading (or being read to). These activities are designed to be as comprehensive and crosscurricular as possible. If you are teaching sentence structure in writing, why not use sentences that teach science or social studies? We also know and understand that you must account for all activities done in the classroom. While each title is aligned to all of the state standards (both the text and the For Creative Minds), it would be nearly impossible to align all of these activities to each state's standards at each grade level. However, we do include some of the general wording of the CORE language arts and math standards, as well as some of the very general science or social studies standards. You'll find them listed as "objectives" in italics. You should be able to match these objectives with your state standards fairly easily.

For homeschooling parents and teachers in private schools: Use as above. Aren't you glad you don't have to worry about state standards?

For parents/caregivers: Two of the most important gifts you can give your child are the love of reading and the desire to learn. Those passions are instilled in your child long before he or she steps into a classroom. Many adults enjoy reading historical fiction novels . . . fun to read but also to learn (or remember) about historical events. Not only does Arbordale publish stories that are fun to read and that can be used as bedtime books or quiet "lap" reading books, but each story has non-fiction facts woven through the story or has some underlying educational component to sneak in "learning." Use the "For Creative Minds" section in the book itself and these activities to expand on your child's interest or curiosity in the subject. They are designed to introduce a subject so you don't need to be an expert (but you will probably look like one to your child!). Pick and choose the activities to help make learning fun!

For librarians and bookstore employees; after-school program leaders; and zoo, aquarium, nature center, park \& museum educators: Whether reading a book for story time or using the book to supplement an educational program, feel free to use the activities in your programs. We have done the "hard part" for you.

## What Do Children Already Know?

Young children are naturally inquisitive and are sponges for information. The whole purpose of this activity is to help children verify the information they know (or think they know) and to get them thinking "beyond the box" about a particular subject.
Before reading the book, ask the children what they know about the subject. A list of suggested questions is below. The children should write down their "answers" (or adults for them if the children are not yet writing) on the chart found in Appendix A, index cards, or post-it notes.
Their answers should be placed on a "before reading" panel. If doing this as a group, you could use a bulletin board or even a blackboard. If doing this with individual children, you can use a plain manila folder with the front cover the "before reading" panel. Either way, you will need two more panels or sections-one called "correct answer" and the other "look for correct answer."
Do the children have any more questions about the subject ? If so, write them down to see if
 they are answered in the book.
After reading the book, go back to the questions and answers and determine whether the children's answers were correct or not.
If the answer was correct, move that card to the "correct answer" panel. If the answer was incorrect, go back to the book to find the correct information.
If the children have more questions that were not answered, they should look them up.
When an answer has been found and corrected, the card can be moved to the "correct answer" panel.

## Pre-Reading Questions

1. Looking at the cover, what do you think this book is about?
2. Do you think the book is fiction or nonfiction? Why?
3. Do you think animals really talk to each other the way we do?
4. What do you think the fastest animal in the world is?
5. What are some ways that animals move?
6. Is it fair for an animal that swims or flies to be in a race against animals that run? Why or why not?

## Comprehension Questions \& Writing Prompts

Objective: Ask and answer questions about key details in a text read aloud or information presented orally or through other media.

1. Why did some animals think it was unfair to have a 100 -yard dash race?
2. What animal won that race and how does that animal move?
3. What animal said the race should be a long-distance run instead of a short dash?
4. What animal said that animals with two legs should be in a separate race than animals with four legs?
5. What two animals said the race should be in water instead of on land?
6. What two animals thought the race should be flying instead?
7. What animal suggested that the race shouldn't be for distance but how fast animals can move their wings?
8. What animal suggested that body speed should measure tongues instead of wings.
9. What animal suggested that the race should be for how fast they can punch front claws?
10. Why do you think all of these animals wanted different races?
11. How did the way the animals move determine which kind of race they were in?
12. Do you think the races were fair? Why or why not?
$\leftrightarrow$ Arbordale Publishing

## Cross-Curricular Vocabulary Activities

Objective Core Language Arts:
Determine or clarify the meaning of unknown and multiple-meaning words and phrases based on grade-level reading and content.
Identify new meanings for familiar words and apply them accurately (e.g., duck is a bird \& the verb to duck). Use words \& phrases acquired through conversations, reading/being read to, and responding to texts. Determine the meaning of general academic and domain-specific words and phrases in a text relevant to a grade-level topic or subject area.
Explain the function of nouns, pronouns, verbs, adjectives, and adverbs in general and their functions in particular sentences.
Write informative/explanatory texts in which they introduce a topic, use facts and definitions to develop points, and provide a concluding statement or section.
Use frequently occurring adjectives.
Vocabulary Game: This activity is a very general idea and is designed to get children thinking of vocabulary words that will then be used as the beginning vocabulary list for a science lesson.
Select an illustration from the book and give the children a specific length of time (five minutes?) to write down all the words they can think of about the particular subject. It is helpful to project an illustration on a whiteboard. Use eBook or book preview found at www.ArbordalePublishing.com.
The children's word list should include anything and everything that comes to mind, including nouns, verbs, and adjectives. At the end of the time, have each child take turns reading a word from his/her list. If anyone else has the word, the reader does nothing. However, if the reader is the only one with the word, he/she should circle it. While reading the list, one person should write the word on a flashcard or large index card and post it on a bulletin board or wall.
At the end, the child with the most words circled "wins." And you have a start to your science vocabulary list. Note: if a child uses an incorrect word, this is a good time to explain the proper word or the proper usage.

Glossary/Vocabulary Words: Word cards may be used (see Appendix) or have children write on index cards, a poster board, or on a chalkboard for a "word wall." If writing on poster board or chalkboard, you might want to sort words into nouns, verbs, etc. right away to save a step later if using for Silly Sentences (on the next page). Leaving the words posted (even on a refrigerator at home) allows the children to see and think about them frequently.
Using the Words: The following activities may be done all at once or over a period of several days.

- Sort vocabulary words into nouns, verbs, adjectives, etc. and write what they are on the backs of the cards. When the cards are turned over, all you will see is "noun," etc. (these can then be used for the "silly sentences" on the next page).
- After the cards have been sorted, go over the categories to ensure that all cards have been placed correctly. (Mistakes are a great opportunity to teach!)
- Choose two words from each category and write a sentence for each word.
- Write a story that uses at least ten vocabulary words from the word sort.
- Have children create sentences using their vocabulary words. Each sentence could be written on a separate slip of paper. Have children (individually or in small groups) sort and put sentences into informative paragraphs or a story. Edit and re-write paragraphs into one informative paper or a story.
Silly Sentence Structure Activity: This "game" develops both an understanding of sentence structure and the science subject. Use words from the "word wall" to fill in the blanks. After completing silly sentences for fun, have children try to fill in the proper words by looking for the correct information in the book.


## Edible Sorting and Classifying Activity

Objective Core Language Arts Vocabulary Acquisition and Use: Sort common objects into categories (e.g., shapes, foods) to gain a sense of the concepts the categories represent.

Objects and materials can be sorted and described by their properties. (color, shape, size, weight and texture)
Use whole numbers*, up to 10, in counting, identifying, sorting, and describing objects and experiences.

Gather a cup of edible "sorting items." For example:

- As many different kinds of M\&Ms as you can find
- Chocolate \& peanut butter chips
- Hershey Kisses
- Peanuts or other type of nuts

Ask the children to sort the items into groups. There is no right and wrong, only what makes sense to the child. When finished, ask the child:

What feature or attribute (color, size, ingredient, etc.) did you use to sort the items?

- Were there some items that fit more than one group or don't fit any group?
- If so, how did the child decide which attribute was more important?
- How are various objects similar and different?
- Was it easy to sort or were there some items that were a little confusing?

If more than one person did this, did everyone sort by the same attribute? To extend the learning, graph the attributes used to sort the items (blank graph below).

Graph the attributes that children used to sort their items. (Graph provided on next page.

What was the most common attribute (size, shape, color, etc.) used?

Objective:
Describe several external features and behaviors of animals that can be used to classify them (e.g., size, color, shape of body parts).
Identify observable similarities and differences (e.g., number of legs, body coverings, size) between/ among different groups of animals.

| 10 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 9 |  |  |  |  |
| 8 |  |  |  |  |
| 7 |  |  |  |  |
| 6 |  |  |  |  |
| 5 |  |  |  |  |
| 4 |  |  |  |  |
| 3 |  |  |  |  |
| 2 |  |  |  |  |
| 1 |  |  |  |  |
| attribute |  |  |  |  |

Arbordale Publishing

## Classifying Animals

Objective: Classify organisms according to one selected feature, such as body covering, and identify other similarities shared by organisms within each group formed.
Describe several external features and behaviors of animals that can be used to classify them (e.g., size, color, shape of body parts).
Identify observable similarities and differences (e.g., number of legs, body coverings, size) between/ among different groups of animals.

Just as we sort candy, scientists sort all living things into groups to help us understand and connect how things relate to each other. Scientists ask questions to help them sort or classify animals.

Based on the answers to the questions, scientists can sort the living organisms. The first sort is into a Kingdom. There are five commonly accepted Kingdoms: Monera, Protista, Fungi, Plantae, and Animalia. All of the living things in this book belong to Animalia or the Animal Kingdom.

The next big sort is into a Phylum. One of the first questions that a scientist will ask is whether the animal has (or had at some point in its life) a backbone. If the answer is "yes," the animal is a vertebrate. If the answer is "no," the animal is an invertebrate.

Each Phylum is broken down into Classes, like mammals, birds, reptiles, fish, amphibians, insects, or gastropods (snails). Then each class can be broken down even further into orders, families, genus and species, getting more specific.

The scientific name is generally in Latin or Greek and is the living thing's genus and species. People all over the world use the scientific names, no matter what language they speak. Most living organisms also have a common name that we use in our own language.

Some questions scientists ask:

- Does it have a backbone?
- What type of skin covering does it have?
- Does it have a skeleton? If so, is it inside or outside of the body?
- How many body parts does the animal have?
- Does it get oxygen from the air through lungs or from the water through gills?
- Are the babies born alive or do they hatch from eggs?

Does the baby drink milk from its mother?
. Is it warm-blooded or cold-blooded?
Using what you know, and information and pictures in the book, see how many Animal Chart squares you can fill in for each animal.

## Animal Chart

|  | Animals | Cheetah | Husky |
| :---: | :---: | :---: | :---: |
| Appendages | legs (how many) |  |  |
|  | flippers/fins |  |  |
|  | wings |  |  |
|  | tail/no tail |  |  |
|  | horns/antlers |  |  |
| Feet or hands: if they have; may have more than one | claws |  |  |
|  | web |  |  |
|  | toes |  |  |
|  | opposable thumbs/toes |  |  |
|  | hooves |  |  |
| Movement: may do more than one | walks/runs |  |  |
|  | crawls |  |  |
|  | flies |  |  |
|  | slithers |  |  |
|  | swims |  |  |
|  | Climbs |  |  |
|  | hops |  |  |
| Backbone | backbone/vertebrate |  |  |
|  | no backbone/invertebrate |  |  |
| Skeleton | inside skeleton (endoskeleton) |  |  |
|  | outside skeleton (exoskeleton) |  |  |
|  | no skeleton |  |  |
| Body covering | hair/fur/whiskers/quills |  |  |
|  | feathers |  |  |
|  | dry scales or bony plates |  |  |
|  | moist scales |  |  |
|  | smooth, moist skin |  |  |
|  | hard outer shell |  |  |
|  | hard outer covering |  |  |
| Color/patterns | stripes or spots |  |  |
|  | mostly one color |  |  |
|  | skin color changes |  |  |
|  | bright, vivid colors |  |  |
| Gets oxygen | lungs |  |  |
|  | gills |  |  |
|  | warm-blooded (endothermic) |  |  |
| Body temperature | cold-blooded (ectothermic) |  |  |
| Babies | born alive |  |  |
|  | hatch from eggs |  |  |
|  | born alive or hatch from eggs |  |  |
| Metamorphosis | complete |  |  |
|  | incomplete |  |  |
|  | none |  |  |
| Teeth | sharp |  |  |
|  | flat |  |  |
|  | no teeth (bill/beak) |  |  |
| Food | plant eater (herbivore) |  |  |
|  | meat eater (carnivore) |  |  |
|  | both (omnivore) |  |  |
| Arbordale Publishing 10 |  |  |  |


|  | Animals | Sea Turtle | snake |
| :---: | :---: | :---: | :---: |
| Appendages | Legs (how many) |  |  |
|  | flippers/fins |  |  |
|  | wings |  |  |
|  | tail/no tail |  |  |
|  | horns/antlers |  |  |
| Feet or hands: if they have, may have more than one | claws |  |  |
|  | web |  |  |
|  | toes |  |  |
|  | opposable thumbs/toes |  |  |
|  | hooves |  |  |
| Movement: may have more than one | walks/runs |  |  |
|  | crawls |  |  |
|  | flies |  |  |
|  | slithers |  |  |
|  | swims |  |  |
|  | climbs |  |  |
|  | hops |  |  |
| Backbone | backbone/vertebrate |  |  |
|  | no backbone/invertebrate |  |  |
| Skeleton | inside skeleton (endoskeleton) |  |  |
|  | outside skeleton (exoskeleton) |  |  |
|  | no skeleton |  |  |
| Body covering | hair/fur/whiskers/quills |  |  |
|  | feathers |  |  |
|  | dry scales or bony plates |  |  |
|  | moist scales |  |  |
|  | smooth, moist skin |  |  |
|  | hard outer shell |  |  |
|  | hard outer covering |  |  |
| Color/patterns | stripes or spots |  |  |
|  | mostly one color |  |  |
|  | skin color changes |  |  |
|  | bright, vivid colors |  |  |
| Gets oxygen | lungs |  |  |
|  | gills |  |  |
|  | warm-blooded (endothermic) |  |  |
| Body Temperature | cold-blooded (ectothermic) |  |  |
| Babies | born alive |  |  |
|  | hatch from eggs |  |  |
|  | born alive or hatch from eggs |  |  |
| Metamorphis? | complete |  |  |
|  | incomplete |  |  |
|  | none |  |  |
| Teeth | sharp |  |  |
|  | flat |  |  |
|  | no teeth (bill/beak) |  |  |
| Food | plant eaters (herbivore) |  |  |
|  | meat eater (carnivore) |  |  |
|  | both (omnivore) |  |  |


|  | Animals | Bat | peregrine falcon |
| :---: | :---: | :---: | :---: |
| Appendages | Legs (how many) |  |  |
|  | flippers/fins |  |  |
|  | wings |  |  |
|  | tail/no tail |  |  |
|  | horns/antlers |  |  |
| Feet or hands: if they have, may have more than one | claws |  |  |
|  | web |  |  |
|  | toes |  |  |
|  | opposable thumbs/toes |  |  |
|  | hooves |  |  |
| Movement: may have more than one | walks/runs |  |  |
|  | crawls |  |  |
|  | flies |  |  |
|  | slithers |  |  |
|  | swims |  |  |
|  | climbs |  |  |
|  | hops |  |  |
| Backbone | backbone/vertebrate |  |  |
|  | no backbone/invertebrate |  |  |
| Skeleton | inside skeleton (endoskeleton) |  |  |
|  | outside skeleton (exoskeleton) |  |  |
|  | no skeleton |  |  |
| Body covering | hair/fur/whiskers/quills |  |  |
|  | feathers |  |  |
|  | dry scales or bony plates |  |  |
|  | moist scales |  |  |
|  | smooth, moist skin |  |  |
|  | hard outer shell |  |  |
|  | hard outer covering |  |  |
| Color/patterns | stripes or spots |  |  |
|  | mostly one color |  |  |
|  | skin color changes |  |  |
|  | bright, vivid colors |  |  |
| Gets oxygen | lungs |  |  |
|  | gills |  |  |
|  | warm-blooded (endothermic) |  |  |
| Body Temperature | cold-blooded (ectothermic) |  |  |
| Babies | born alive |  |  |
|  | hatch from eggs |  |  |
|  | born alive or hatch from eggs |  |  |
| Metamorphis? | complete |  |  |
|  | incomplete |  |  |
|  | none |  |  |
| Teeth | sharp |  |  |
|  | flat |  |  |
|  | no teeth (bill/beak) |  |  |
| Food | plant eaters (herbivore) |  |  |
|  | meat eater (carnivore) |  |  |
|  | both (omnivore) |  |  |

## Vertebrate Classes

Objective: Compare structures (e.g., wings vs. fins vs. legs; gills vs. lungs; feathers vs. hair vs. scales) that serve similar functions for animals belonging to different vertebrate classes

## Mammals:

hair, fur, whiskers, or quills at some point during their lives backbone (vertebrate) inside skeleton (endoskeleton) lungs to breathe most give birth to live young produce milk to feed young warm-blooded

## Birds:

feathers
backbone (vertebrate) inside skeleton (endoskeleton)
lungs to breathe
hatch from hard-shelled eggs warm-blooded inside skeleton (endoskeleton); most turtles also have a hard outer shell lungs to breathe most hatch from leathery eggs cold-blooded temperature

Fish:
most have scales covered with a thin layer of slime backbone (vertebrate) inside skeleton (endoskeleton) gills to breathe babies are either born alive or hatch from jellylike eggs cold-blooded

## Amphibians:

soft, moist skin backbone (vertebrate) inside skeleton (endoskeleton) most hatchlings (jellylike eggs) are called larvae or tadpoles and live in water, using gills to breathe as they grow, they develop legs and lungs and move onto land cold-blooded

Using the sorting cards, sort the animals into their class.

## Common Invertebrates

## Arthropods: Insects:

hard outer covering
no backbone (invertebrate)
outside skeleton (exoskeleton)
adults have 3 body parts: head, thorax \&
abdomen
mouthparts adapted for chewing, biting,
sucking and lapping
breathe through trachae
compound eyes
3 pairs of legs
usually 2 pairs of wings and 1 pair of
antennae
most hatch from eggs
metamorphosis: none, incomplete, or
complete
cold-blooded

Mollusks<br>Gastropods (Snails):

most have hard shells no backbone (invertebrate)
outside skeleton (exoskeleton)
hatch from eggs
cold-blooded

## Anthropod

 Arachnia (Spiders):no backbone
one or two body segments pincers or fangs near mouth

4 pairs of legs
no antennae

## Mollusks <br> Bi-valves:

have a two-part shell with a hinge to open/close no backbone (invertebrate)
outside skeleton (exoskeleton)
hatch from eggs
cold-blooded
marine and freshwater
symmetry

## Arthropod

Crustaceans (Crabs):
hard outer covering no backbone (invertebrate)
outside skeleton (exoskeleton)
mouthparts adapted for chewing
5 or more pairs of legs claws
2 pairs of anntenae
2 compound eyes on stalks
adults have 2 or 3 body segments
hatch from eggs
cold-blooded

## Dichotomous (Yes/No) Key

A dichotomous key helps to sort (classify) animals. These keys work by asking yes or no questions. Each answer leads to another yes or no question, until the animal class is identified. There are five classes of animals with backbones (vertebrates): fish, reptiles, amphibians, birds, and mammals. Use the information found in the book to match the animal to its classification.

Objective: Classify organisms according to one selected feature, such as body covering, and identify other similarities shared by organisms within each group formed.
Describe several external features and behaviors of animals that can be used to classify them (e.g., size, color, shape of body parts).
Identify observable similarities and differences (e.g., number of legs, body coverings, size) between/ among different groups of animals.


## Animal Sorting Cards

Objective: Classify organisms according to one selected feature, such as body covering, and identify other similarities shared by organisms within each group formed.
Describe several external features and behaviors of animals that can be used to classify them (e.g., size, color, shape of body parts).
Identify observable similarities and differences (e.g., number of legs, body coverings, size) between/ among different groups of animals.

## Animal Card Games:

Sorting: Depending on the age of the children, have them sort cards by:
where the animals live (habitat) number of legs (if the animals have legs) how they move (walk, swim, jump, or fly)
tail, no tail
colors or skin patterns animal class type of skin covering (hair/fur, feathers, scales, moist skin) what they eat (plant eaters/herbivores, meat eaters/carnivores, both/ omnivores)
Memory Card Game: Make two copies of each of the sorting card pages and cut out the cards. Mix them up and place them face down on a table. Taking turns, each player should turn over two cards so that everyone can see. If the cards match, he or she keeps the pair and takes another turn. If they do not match, the player should turn the cards back over and it is another player's turn. The player with the most pairs at the end of the game wins.
Who Am I? Copy and cut out the cards. Poke a hole through each one and tie onto a piece of yarn. Have each child put on a "card necklace" without looking at it so the card hangs down the back. The children get to ask each person one "yes/no" question to try to guess "what they are." If a child answering the question does not know the answer, he/she should say, "I don't know." This is a great group activity and a great "ice-breaker" for children who don't really know each other.
Charades: One child selects a card and must act out what the animal is so that the other children can guess. The actor may not speak but can move like the animal and imitate body parts or behaviors. For very young children, you might let them make the animal sound. The child who guesses the animal becomes the next actor.


Arbordale Publishing

$\leftrightarrow$ Arbordale Publishing


Arbordale Publishing

## Math: Measuring (compare \& contrast)

Objective Core Mathematics Measurment: Order three objects by length;
Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2, \ldots$, and represent whole-number sums and differences within 100 on a number line diagram.
Math, Counting \& Cardinality: Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle.

| Fastest Land Animal | Cheetah | $75 \mathrm{mph}(120 \mathrm{~km} / \mathrm{h})$ |
| :--- | :--- | :--- |
| Fastest Land Over Distance | Husky | $20 \mathrm{mph}(32 \mathrm{~km} / \mathrm{h})$ |
| Fastest Reptile on Land | Black Spiny-Tailed Iguana | $20 \mathrm{mph}(32 \mathrm{~km} / \mathrm{h})$ |
| Fastest Reptile in Water | Green Sea Turtle | $20 \mathrm{mph}(32 \mathrm{~km} / \mathrm{h})$ |
| Fastest Bird on Land | Ostrich | $40 \mathrm{mph}(64 \mathrm{~km} / \mathrm{h})$ |
| Fastest Bird in Water | Gentoo Penguin | $25 \mathrm{mph}(40 \mathrm{~km} / \mathrm{h})$ |
| Fastest Bird in Air | Peregrine Falcon | $240 \mathrm{mph}(386 \mathrm{~km} / \mathrm{h})$ |
| Fastest Fish | Black Marlin | $80 \mathrm{mph}(128 \mathrm{~km} / \mathrm{h})$ |
| Fastest Hopper | Red Kangaroo | $40 \mathrm{mph}(64 \mathrm{~km} / \mathrm{h})$ |
| Fastest Crawler | Black Mamba | $14 \mathrm{mph}(22 \mathrm{~km} / \mathrm{h})$ |
| Fastest Animal at Night | Free-Tailed Bat | $60 \mathrm{mph}(96 \mathrm{~km} / \mathrm{h})$ |
| Fastest Wing Speed | Bee Hummingbird | $30 \mathrm{mph}(48 \mathrm{~km} / \mathrm{h})$ |
| Fastest Tongue | Giant Palm Salamander | $100 \mathrm{mph}(160 \mathrm{~km} / \mathrm{h})$ |
| Fastest Punch* | Peacock Mantis Shrimp | $50 \mathrm{mph}(80 \mathrm{~km} / \mathrm{h})$ |

Print the "race" and "aninal winner" from the next page. Cut into strips. Get a tape measure and extend it out to 100 inches to use as a number line. One inch on the tape measure equals one mile per hour. Tape or place the race and winning animal on the "number line."
Use the number line or the chart to answer the questions:

1. Which animal does not fit on the "number line" or is above 100 mph ? How much faster than 100 mph is that animal?
2. Which animals move at the same speed as the husky and how do they move?
3. Which animal is the "slowest" and at what speed?" Do you think you could run that fast?
4. Many cars drive on a highway at 60 mph . Which animal moves at that same speed?
5. Which two animals move at 40 mph ?
6. Which animal moves faster: the black marlin or the cheetah? By how much?
7. Which animal moves faster: the penguin or the husky? By how much?

| Fastest Land Animal | Cheetah |
| :---: | :---: |
| Fastest Land Over Distance | Husky |
| Fastest Reptile on Land | Black Spiny-Tailed Iguana |
| Fastest Reptile in Water | Green Sea Turtle |
| Fastest Bird on Land | Ostrich |
| Fastest Bird in Water | Gentoo Penguin |
| Fastest Bird in Air | Peregrine Falcon |
| Fastest Fish | Black Marlin |
| Fastest Hopper Kangaroo |  |
| Fastest Crawler | Black Mamba |
| Fastest Animal at Night | Free-Tailed Bat |
| Fastest Wing Speed | Bee Hummingbird |
| Fastest Tongue | Giant Palm Salamander |
| Fastest Punch | Peacock Mantis Shrimp |


| Question: | Question: |
| :--- | :--- |
| My answer: | My answer: |
|  |  |
|  |  |
| This information is correct! | This information is correct! |
| This information is not correct; can you |  |
| find the correct information? | This information is not correct; can you <br> find the correct information? |
| Question: | Question: |
| My answer: | My answer: |
| This information is correct! |  |
| This information is not correct; can you |  |
| find the correct information? | This information is not correct; can you <br> find the correct information? |

Compare and contrast two animals. Make sure to include how they move.


